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1. Introduction 
Two-centre approximate molecular orbitals, based on the simple "united-atom" approxi- 

mation and including a variational charge parameter, have been calculated for the lowest even 
and odd a, ~ and (~ states of homonuclear diatomic molecule ions of arbitrary nuclear charge Z. 
These approximate electronic wave-functions are shown to satisfy the same scaling equations 
with respect to Z as the exact solutions. They are very accurate at small internuclear separa- 
tions for all states, but at larger separations there is some loss of accuracy which can be com- 
pensated by including corrections calculated by conventional Rayleigh-Schr6dinger perturba- 
tion theory. 

Theoretical investigations of the electronic structure and the physical and 
chemical properties of many  electron atoms have relied heavily on the well-known 
solutions of the Schr6dinger equation for the hydrogen a tom and its isoelectronie 
ions. Indeed, remarkably  accurate predictions have often been made on the basis 
of  very simple "screened" hydrogen-like orbitals or (nodeless) Slater orbitals 
(1VKoRs~, YouNo, and HAu~wI~z [7]; BOLOTIN, LEVI~SO~r and LEVlW [l]). 

Calculations on homonuclear diatomic molecules should in principle begin 
with the corresponding solutions of the Schr6dinger equation for the hydrogen 
molecule-ion and ions isoeleetronie with it. Effectively exact solutions of the H + 
problem for a large number  of states have been calculated by  many  authors, the 
most recent tabulation being tha t  of tIU~TEI~ and PRITCH~D [6]. These "exac t"  
solutions are too complicated to be used in calculations on larger systems, and 
simple approximations to them are desirable. 

We have recently investigated the accuracy of a two-centre approximation in 
which simple "united a tom"  wave functions are improved by  means of conven- 
tional Rayleigh-Schr6dinger perturbat ion theory to yield accurate solutions for a 
number  of states of I-I + (CoHEn, and ~cEAom~AN [2]; COHEre, I)OI~ELL, and 
~cEAc~I~A~r [3] ; and CoHmr 1VKoEACH~N, and ~cP~EE [4]). We shall now show 
tha t  our approximation procedures are readily extended to the t rea tment  of 
systems having arbi t rary nuclear charge, and the resulting wave-functions should 
therefore serve as useful approximations to molecular orbitals in many-electron 
homonuelear systems. 

* Present address: Department of Physical Chemistry, The Hebrew University, Jeru- 
salem, Israel. 
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2. Scaling Relations and Exact Solutions for Arbitrary 5Tuelear Charge Z 

The non-relativistic SchrSdinger equation which describes the motion of a 
single electron moving in the joint Coulomb field of two nuclei each of charge Z 
atomic units (a. u.) which are supposed fixed at a separation of 2 R a.u. may be 
written conveniently as 

H(Z, R) ~(Z,  R) = E(Z, R) ~g(Z, R) . (l) 

In  the notation of Fig. l, the electronic Hamiltonian H(Z, R) may be written in 
atomic units 

B ( z ,  R)  = - �89 V 2 - Z ~ + W (2) 

or, more conveniently, in confocal elliptic coordinates (which take explicit account 
of the molecular geometry) 

1 
H(Z, R) = 21~ (~ - t, ~) 

I ~ [  ~_~1 ~8[ O] (~ _(~-~),) (1 - t~ 2) ~8' } • (A 2 -  l) + (l - # ~ ) ~ #  + + 4ZR2 . (3) 

In this coordinate system, ~ is the azimuthal angle measured about the inter- 
nuclear axis (conveniently chosen as z-axis), while A and # are defined by the rela- 
tions 

_ _ r a  + re ra  -- rb 

2R ' /z: 2R (4) 
so that  

i_< ~ < ~ ,  --i_< #_< i ,  0_< ~ < 2 ~ .  (5) 

If all distances are now scaled according to 

~ = Z r a ,  ~'b=Zrb, R = Z R  (6) 

we find that  2,/z and T are all unchanged, so that  we have from (3) 

H(Z, R) = Z 2 H(i,  1~) - Z 2 H(~., ZR) . (7) 

z 

/o 
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Similarly we may deduce from (l) the scaling equations for the energy eigenvalues 

E(Z, R) = Z ~ 8(1,/~) - Z ~ E(I ,  ZR)  , (8) 

and for the unnormalized eigenfunctions 

~(Z,  R) = T ( I ,  R) - ~(1, ZR)  . (9) 

Thus knowledge of the exact solutions for Z ~- I at a given internuclear separa- 
tion R suffices to give the corresponding solutions for any Z at a separation R/Z. 

Our approximate solutions will now be shown to satisfy the same scaling 
Eqs. [(8) and (9) above] as the exact solutions. For simplicity of presentation, we 
treat  in detail the case of the lsa a (ground) state, but  the argument is easily 
generalized to other states. As far as possible, we follow the notations of Co~v,~ 
and M c E ~ c m ~  [2]. 

3. Scaling of the Approximate Solution for the 1sag-State 

We choose the mmormalized "united-atom" approximation 

~o(Cr Z, R) = exp (-c~ R ~) ~- exp (--p~) ,  (t0) 

say, where ~(Z, R) is a disposable "charge" parameter. This ~Y0(a; Z, R) satisfies 
the zero-order SchrSdinger equation 

[Ho(~;Z, R) -- E0(~; Z, R)] To(CO; Z, R) = 0 ,  (li) 

and we may choose for convenience E0(~; Z, R) = - �89 cr ~. 
The effective tIamiltonian H0(~; Z, R) is then defined in terms of the electronic 

Itamiltonian H(Z, R) of Eq. (3) and the "perturbation operator" HI(~ ; Z, R) by  
means of 

H0(~; Z, R) ~- H(Z, R) - H:(~;  Z, R) . (t2) 

Explicitly, we have 
l 

H:(~;  Z, R) -- 2/~ (~ _ ~)  {2/~(~ - 2 Z) 2 + cr ~ R~(l -- #~)} (13) 

and 

a ~ (l  + 2~ R + w a2 R2) _ 2Zo~ (: + 2~R)  

I + 2 ~ / ~ +  -~ o~2/~ 2 
(14) 

The charge parameter ~(Z, R) is now determined by optimizing the total 
energy through first order. This procedure leads in this case to the algebraic 
equation: 

4 p 4 + t 2 p a ~ - ( t 2 - - t 6 / ~ ) p ~ §  (t5) 

Clearly, solutions of (15) must be of the form P = P (l, ~), so tha t  

~(z ,  R)  = Z p ( l ,  R ) / ~  = Z ~ ( t ,  Z R )  , (16) 

say. We now have from (10) and (14), 

8o(~; z,  R) = Z~ 8o(~; l, ~ ) ,  ~o(~; Z, R) = ~0(~; 1, ~) (17) 

81(a; Z, R) = Z~ EI(~; i, _~) (t8) 
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and from (13) 

H1(cr Z, R ) =  Z 2 HI(~; l ,  R) .  (t9) 

Since both H(Z, R) and HI(~; Z, t~) scale in the same way, we deduce that  

H0(~; Z, R) = Z 2 H0(~; i,/Y) (20) 

and we may now prove inductively that  

~Sn(o~;Z, R) = ~n(~;  i , /~)  (21a) 
and 

En(~ ; Z, R) = Z ~ En(~ ; l , /~)  (2ib) 

for every term in the perturbation expansions 

W(Z, R) = ~ ~n(~;  Z, R) (22a) 
n = 0  

and 
o? 

E(Z, R) = Z En(o~; Z, R) . (22b) 
n = O  

Thus, our approximate solutions (which are all based on the "united-atom" 
approximation and refined by means of Rayleigh-SchrSdinger perturbation theory) 
may be shown to satisfy the exact scaling Eqs. (8) and (9). Further,  each term in the 
perturbation expansions [Eq. (22) above] scales correctly, so that  our earlier 
results for H + (Z = l) are easily adapted to systems with arbitrary nuclear charge 
Z. 

4. Discussion 

Zero.Order Solutions 

The zero-order "united atom" solutions W0(c~; Z, R), where c~ is the "effective 
charge" parameter, are selected according to the prescription of D ~ G A ~ o  and 
LEwis [5]. However, it is actually more convenient to present values of the 
"screening" parameter s which is related to ~ by  means of 

2 
a(Z, R) = ~- [Z -- s(Z, R)] (23) 

where n is the principal quantum number of the state considered. I t  is clear tha t  s 
scales in the same way as c~, so that  

s(Z, R) = Zs(t,  R) =_ Zs(l, ZR)  . (24) 

The table contains our calculated values of these "reduced" screening para- 
meters, s(l, ZR),  tabulated over the range of Z R  values from 0 to 4. Intermediate 
values can be interpolated with confidence from our tabulated entries, since our 
own calculations indicate that  the energies are quite insensitive to small changes 
in the last two decimal places. I t  is interesting to note tha t  the screening para- 
meters are all positive for the bonding states (lsag, 2p~u, 3d~a) and all negative 
for the corresponding antibonding states (2pau, 3d~ a, 4/~u). 

2'irst-Order Solutions 

The first-order Rayleigh-SchrSdinger perturbation equation can be solved 
exactly for W1(cr Z, R) by the methods of Co~v,~ and ~cEAcm~n_w [2]. The sealing 
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Table. Reduced screening parameters, s (1, Z R) 

ZR State 
ts~r 2pa~ 2 p ~  3dzg 3d~g 4 /~  

0.125 0.04291 -0.01334 0.0040i -0.00086 0.00079 -0.00009 
0.250 0.10427 -0.05183 0.01468 -0.00337 0.00311 -0.00037 
0.375 0.15880 -0.11164 0.02962 -0.00742 0.00683 -0.00082 
0.500 0.20502 -0.18484 0.04686 -0.01279 0.01178 -0.00143 
0.625 0.24428 -0.25856 0.06509 -0.01923 0.01775 -0.00219 
0.750 0.27801 -0.32055 0.08350 -0.02646 0.02455 -0.00307 
0.875 0.30735 -0.36511 0.10164 -0.03417 0.03199 -0.00406 
t.000 0.33316 -0.39287 0.11924 -0.04207 0.03991 -0.00512 
1.125 0.35609 -0.40713 0.13617 -0.04987 0.04817 -0.00623 
1.250 0.37666 -0.41145 0.15237 -0.05731 0.05667 -0.00736 
1.375 0.39523 -0.40874 0.16784 -0.06418 0.06530 -0.00849 
t.500 0.41213 -0.40119 0.18258 -0.07032 0.07400 -0.00960 
t.625 0.42758 -0.39035 0.19663 -0.07562 0.08271 -0.05065 
t.750 0.44179 -0.37731 0.21000 -0.08001 0.09138 -0.01162 
1.875 0.45493 -0.36287 0.22275 -0.08346 0.09998 -0.05250 
2.000 0.46711 -0.34756 0.23491 -0.08597 0.10848 -0.01327 
2.250 0.48907 -0.31577 0.25761 -0.08836 0.12509 -0.05442 
2.500 0.50836 -0.28386 0.27836 -0.08761 0.14112 -0.05496 
2.750 0.52549 -0.25277 0.29741 -0.08427 0.15651 -0.01485 
3.000 0.54085 -0.22295 0.31498 -0.07888 0.17126 -0.01407 
3.250 0.55472 -0.19458 0.33123 -0.07190 0.18536 -0.01263 
3.500 0.56734 -0.16771 0.34633 -0.06375 0.19884 -0.05056 
3.750 0.57888 -0.14230 0.36039 -0.05473 0.21172 -0.00790 
4.000 0.58951 -0.11829 0.37354 -0.04512 0.22402 -0.00471 

of  our  f i rs t -order  solut ions has  been  descr ibed  above.  The  i m p r o v e m e n t  in  t he  
energy  va lues  ca lcu la ted  us ing the  f i rs t -order  a p p r o x i m a t i o n  

~(~  ; Z, R) ~- ~[Jo(~; Z, R) -~ Tx(~; Z, R) (25) 

is significant,  t he  more  so at  t he  larger  separa t ions ,  a n d  pa r t i c u l a r l y  for a s ta tes .  
The  accuracy  a t  larger  va lues  of  ZR m a y  be i m p r o v e d  fu r the r  b y  in t roduc ing  

the  linear va r i a t i on  p a r a m e t e r  U in to  t he  a p p r o x i m a t e  solut ion 

T(cr V; Z, R) = ~[Jo(or Z, R) ~- ~ T I ( ~ ;  Z, R ) .  (26) 

The  va lues  of  ~ are independent of Z ;  th is  is a consequence of  t he  fac t  t h a t  ~0  and  
~ bo th  scale in t he  same w a y  as t he  exac t  T .  

Molecular  p roper t ies  o ther  t h a n  the  electronic energy can easi ly  be deduced  
f rom the  d a t a  on H + b y  scal ing procedures  s imilar  to  those  descr ibed  above.  The  
accu racy  of  our  ear l ier  ca lcula t ions  [2, 3, 4] will t hus  ca r ry  over  to  sys tems  wi th  
a r b i t r a r y  Z, so t h a t  the  a p p r o x i m a t e  wavefunc t ions  m a y  be r ega rded  as suff icient ly 
accura te  for  m a n y  purposes.  

I t  seems l ike ly  t h a t  t he  s imple  re t i r ed-a tom (zero order)  solut ions  will p rov ide  
a d e q u a t e  descr ip t ions  of  t he  electronic p roper t ies  of  z and  ~ orb i ta l s  of  m a n y -  
e lec t ron  molecules.  F o r  t he  a orbi ta ls ,  our  f i rs t -order  solut ions should  serve as 
sa t i s f ac to ry  approx ima t ions .  
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