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1. Introduction

Two-centre approximate molecular orbitals, based on the simple “united-atom” approxi-
mation and including a variational charge parameter, have been calculated for the lowest even
and odd ¢, 7 and J states of homonuclear diatomic molecule ions of arbitrary nuclear charge Z.
These approximate electronic wave-functions are shown to satisfy the same scaling equations
with respect to Z as the exact solutions. They are very accurate at small internuclear separa-
tions for all states, but at larger separations there is some loss of accuracy which can be com-
pensated by including corrections calculated by conventional Rayleigh-Schrodinger perturba-
tion theory.

Theoretical investigations of the electronic structure and the physical and
chemical properties of many electron atoms have relied heavily on the well-known
solutions of the Schridinger equation for the hydrogen atom and its isoelectronic
ions. Indeed, remarkably accurate predictions have often been made on the basis
of very simple “screened” hydrogen-like orbitals or (nodeless) Slater orbitals
(MorsEe, Youna, and HaAuRwITZ [7]; BoLoTIN, LEVINSON, and LEVIN [1]).

Calculations on homonuclear diatomic molecules should in principle begin
with the corresponding solutions of the Schrédinger equation for the hydrogen
molecule-ion and ions isoelectronic with it. Effectively exact solutions of the Hf
problem for a large number of states have been calculated by many authors, the
most recent tabulation being that of HoNTER and PrrroHARD [6]. These “exact”
solutions are too complicated to be used in calculations on larger systems, and
simple approximations to them are desirable.

We have recently investigated the accuracy of a two-centre approximation in
which simple “united atom” wave functions are improved by means of conven-
tional Rayleigh-Schrédinger perturbation theory to yield accurate solutions for a
number of states of HF (ComeN, and McEacuRAN [2]; ComEN, DORRELL, and
McoEacsRAY [3]; and ConEN, MOEACHRAN, and McPHEE [4]). We shall now show
that our approximation procedures are readily extended to the treatment of
systems having arbitrary nuclear charge, and the resulting wave-functions should
therefore serve as useful approximations to molecular orbitals in many-electron
homonuclear systems.
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2. Sealing Relations and Exact Solutions for Arbitrary Nuelear Charge Z

The non-relativistic Schrédinger equation which describes the motion of a
single electron moving in the joint Coulomb field of two nuclei each of charge Z
atomic units (a. u.) which are supposed fixed at a separation of 2 R a.u. may be

written conveniently as
H(Z, RYW(Z, R)= E(Z, R)yP(Z, R) . 1)

In the notation of Fig. 1, the electronic Hamiltonian H(Z, R) may be written in
atomic units
1 1
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or, more conveniently, in confocal elliptic coordinates (which take explicit account

of the molecular geometry)

1
H(Z, B) =~ s

X PRI T POl I C . Bl

% {% {(l 2 %] o [(1 ) 3,“} * (22— 1) (1 - p?) og? + 4ZR2} ' ®)
In this coordinate system, @ is the azimuthal angle measured about the inter-
nuclear axis (conveniently chosen as z-axis), while 4 and y are defined by the rela-
tions

ta + T Ta — I'p
so that
1<i<oo, —il=<u<tl, 0z¢<2nm. (8)
If all distances are now scaled according to
Fo=2r,, To=242ry, R=ZR (6)
we find that 4, 4 and ¢ are all unchanged, so that we have from (3)
H(Z,R)=Z*H(1,R) = Z2 H1,ZR) . (7)
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Similarly we may deduce from (1) the scaling equations for the energy eigenvalues
EZ Ry =Z*E(1, R) = Z2 E(1, ZR), (8)

and for the unnormalized eigenfunctions

Y(Z, R) =¥, R) = Y(U,ZR). 9)
Thus knowledge of the exact solutions for Z = 1 at a given internuclear separa-
tion R suffices to give the corresponding solutions for any Z at a separation R/Z.
Our approximate solutions will now be shown to satisfy the same scaling
Eqgs. [(8) and (9) above] as the exact solutions. For simplicity of presentation, we
treat in detail the case of the 1soy (ground) state, but the argument is easily
generalized to other states. As far as possible, we follow the notations of CorEN
and McEACHRAN [2].

3. Sealing of the Approximate Solution for the 1so,-State
We choose the unnormalized ‘“‘united-atom” approximation

Yyx; Z, B) = exp (—o RA) = exp (—pl), (10)

say, where «x(Z, R) is a disposable “charge” parameter. This ¥y(«; Z, R) satisfies
the zero-order Schridinger equation

[Ho(x; Z, B) — Ey(x; Z, RY] Po(x; 4, By =0, (14)

and we may choose for convenience Ey(«x; Z, B) = — % o2

The effective Hamiltonian Hy(x; Z, R) is then defined in terms of the electronic
Hamniltonian H(Z, R) of Eq. (3) and the “perturbation operator” H,(«; Z, R) by
means of

Hyx;Z, By = H(Z, R) — Hy(x; Z, R) . (12)
Explicitly, we have
1
H(x;Z, R) = m{2 R(x — 2Z) A+ o R*(1 — u?)} (13)

and
B, =Y, l H, { P <y [ Yo
o (1+2x R+ £a% R?) — 2Za (1 + 20.R)
- 1+2x R+ 2 a*R? :

(14)

The charge parameter «(Z, R) is now determined by optimizing the total
energy through first order. This procedure leads in this case to the algebraic
equation :

dpt+12p°+- (12— 16 R)p2+ (83— 24 R)p—~6R=0. (15)
Clearly, solutions of (15) must be of the form p = p (1, R), so that
&(Z, R) = Zp(1, B)|R = Z&(1, ZR), (16)
say. We now have from (10) and (14),
Byx;Z, R)=Z*By(x; 1, R), Yo(x; %, R) = Py&; 1, RB) (17

Byx; 7, R)=Z* B,(%; 1, R) (18)
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and from (13)

Hix;Z, R)=Z*H,(%;1, R). (19)
Since both H(Z, R) and H,(c; Z, R) scale in the same way, we deduce that
Hy(x;Z, R) =22 Hy(x; 1, R) (20)
and we may now prove inductively that
Puloe; Z, B) = W(x; 1, R) (21a)
and
Ep(x; Z, Ry = 27> Hy(x; 1, R) (21b)
for every term in the perturbation expansions
Y(Z, BR) = §Tn(zx; Z, R) (22a)
and "
EB(Z, B) = gE’n((x; Z, B). (22b)
n=0

Thus, our approximate solutions (which are all based on the ‘“united-atom”
approximation and refined by means of Rayleigh-Schrédinger perturbation theory)
may be shown to satisfy the exact scaling Eqs. (8) and (9). Further, each term in the
perturbation expansions [Eq. (22) above] scales correctly, so that our earlier
results for Hy (Z = 1) are easily adapted to systems with arbitrary nuclear charge
Z.

4. Discussion

Zero-Order Solutions

The zero-order “united atom’ solutions ¥y(«; Z, R), where w is the “‘effective
charge” parameter, are selected according to the prescription of DALgaBNO and
Lewis [56]. However, it is actually more convenient to present values of the
“sereening” parameter s which is related to « by means of

&Z, B) = "f: [Z — s(Z, R)] (23)

where n is the principal quantum number of the state considered. It is clear that s
scales in the same way as «, so that

s(Z, R)=Zs(1, R) = Zs(1, ZR) . (24)

The table contains our calculated values of these “reduced” screening para-
meters, s(1, ZR), tabulated over the range of ZR values from 0 to 4. Intermediate
values can be interpolated with confidence from our tabulated entries, since our
own calculations indicate that the energies are quite insensitive to small changes
in the last two decimal places. It is interesting to note that the screening para-
meters are all positive for the bonding states (1s0y, 2pmy, 3ddy) and all negative
for the corresponding antibonding states (2poy, 3dmg, 4f04).

First-Order Solutions

The first-order Rayleigh-Schrédinger perturbation equation can be solved
exactly for ¥,(«; Z, R) by the methods of Cortx and MOEACHRAN [2]. The scaling

22 Theoret. chim. Acta (Berl.) Vol. 9
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Table. Reduced screening parameters, s (1, ZR)

ZR State
1s0¢ 2p0y 2p7ta 3drny 3ddy 464

0.125 0.04291 —-0.01334 0.00401 -0.00086 0.00079 —0.00009
0.250 0.10427 -0.05183 0.01468 -0.00337 0.00311 —0.00037
0.375 0.15880 -0.11164 0.02962 -0.00742 0.00683 —0.00082
0.500 0.20502 ~0.18484 0.04686 -0.01279 0.01178 -0.00143
0.625 0.24428 —0.25856 0.06509 —0.01923 0.01775 —0.00219
0.750 0.27801 -0.32055 0.08350 -0.02646 0.02455 —-0.00307
0.875 0.30735 ~0.36511 0.10164 —~0.03417 0.03199 ~-0.00406
1.000 0.33316 —0.39287 0.11924 —0.04207 0.03991 —0.00512
1.125 0.35609 —0.40713 0.13617 —0.04987 0.04317 —0.00623
1.250 0.37666 ~-0.41145 0.15237 -0.05731 0.05667 —0.00736
1.375 0.39523 —0.40874 0.16784 —0.06418 0.06530 —0.00849
1.500 0.41213 -0.40119 0.18258 —0.07032 0.07400 —0.00960
1.625 0.42758 -0.39035 0.19663 —0.07562 0.08271 —-0.01065
1.750 0.44179 —-0.37731 0.21000 -0.08001 0.09138 -0.01162
1.875 0.45493 —0.36287 0.22275 -0.08346 0.09998 -0.01250
2.000 046711 —-0.34756 0.23491 —0.08597 0.10848 -0.01327
2.250 0.48907 —0.31577 0.25761 --0.08836 0.12509 —(.01442
2.500 0.50836 --0.28386 0.27836 —0.08761 0.14112 —0.01496
2.750 0.52549 —0.25277 0.20741 —0.08427 0.15651 —0.01485
3.000 0.54085 —0.22295 0.31498 -0.07888 0.17126 -0.01407
3.250 0.55472 —0.19458 0.33123 —0.07190 0.18536 -0.01263
3.500 0.56734 -0.16771 0.34633 -0.06375 0.19884 —-0.01056
3.750 0.57888 —0.14230 0.36039 —0.05473 0.21172 —0.00790
4.000 0.58951 -0.11829 0.37354 -0.04512 0.22402 —0.00471

of our first-order solutions has been described above. The improvement in the
energy values calculated using the first-order approximation

Y(x;Z, R) = VPy(«; Z, B) + Pi(x; Z, R) (25)

is significant, the more so at the larger separations, and particularly for ¢ states.
The accuracy at larger values of ZE may be improved further by introducing
the linear variation parameter  into the approximate solution

Y(x,n;Z, By ="Yyx; Z, R)+n Vy(x; Z, R) . (26)

The values of 1 are independent of Z; this is a consequence of the fact that ¥, and
¥, both scale in the same way as the exact V.

Molecular properties other than the electronic energy can easily be deduced
from the data on Hy by scaling procedures similar to those described above. The
accuracy of our earlier calculations 2, 3, 4] will thus carry over to systems with
arbitrary Z, so that the approximate wavefunctions may be regarded as sufficiently
accurate for many purposes.

It seems likely that the simple united-atom (zero order) solutions will provide
adequate descriptions of the electronic properties of % and 6 orbitals of many-
electron molecules. For the ¢ orbitals, our first-order solutions should serve as
satisfactory approximations.
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